C.U.SHAH UNIVERSITY Summer Examination-2018

Subject Name: Operations Research

Subject Code: 4SC06ORE1
Branch: B.Sc. (Mathematics)
Semester: 6 Date:07/05/2018 Time:02:30 To 05:30 Marks: 70
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1 Attempt the following questions:
a) One of the properties of Linear Programming Model is
(1) It will not have constraints
(2) It should be easy to solve
(3) It must be able to adopt to solve any type of problem
(4) The relationship between problem variables and constraints must be linear
b) The key column indicates
(1) Outgoing variable
(2) Incoming variable
(3) Independent variable
(4) Dependent variable
c) The solution of the Linear programming problem in graphical solution lies in
(1) First quadrant
(2) Second quadrant
(3) Third quadrant
(4) Fourth quadrant
d) When all the elements of replacement ratio column are equal, the situation is known as
(1) Tie
(2) Degeneracy
(3) Break
(4) None of the above
e) The cost coefficient of slack variable is
(1) Zero
(2) One
(3) $>$ than one
(4) < than one
f) In a transportation problem where the demand or requirement is equal to the available resource is known as
(1) Balanced transportation problem
(2) Regular transportation problem
(3) Resource allocation transportation problem
(4) Simple transportation problem
g) In Northwest corner method the allocations are made
(1) Starting from the left hand side top corner
(2) Starting from the right hand side top corner
(3) Starting from the lowest cost cell
(4) Starting from the lowest requirement and satisfying first
h) MODI stands for
(1) Modern distribution
(2) Mendel's distribution method
(3) Modified distribution method
(4) Model index method
i) If the losses of player A are the gins of the player B, then the game is known as:
(1) Fair game
(2) Unfair game
(3) Nonzero sum game
(4) Zero sum game
j) A game involving ' n ' persons is known as:
(1) Multimember game
(2) Multiplayer game
(3) n-person game
(4) Not a game
k) Critical path method is an activity oriented and Program evaluation and review technique is an event oriented. Determine whether the statement is True or False.
I) Saddle point means the value of the game. Determine whether the statement is True or False.
m) Every LP problem can be solved graphically. Determine whether the statement is True or False.
n) Least cost method when applied in comparison with Vogel's approximation method gives a better optimal solution. Determine whether the statement is True or False.

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

a) Obtain the initial basic feasible solution by Vogel's approximation method and
optimal solution by MODI method.

Destinations

	1	1	2	3	4	a_{i}11
		21	16	25	13	
	2	17	18	14	23	13
	3	32	27	18	41	19
	b_{j}	6	10	12	15	

b) Use the penalty (Big-M) Method to solve the following LP Problem

Maximize $z=-2 x_{1}-x_{2}$
Subject to

$$
\begin{gather*}
3 x_{1}+x_{2}=3 \\
4 x_{1}+3 x_{2} \geq 6 \\
x_{1}+2 x_{2} \leq 4 \tag{14}
\end{gather*}
$$

and $\quad x_{1}, x_{2} \geq 0$
Q-3 Attempt all questions
a) Explain various steps of the simplex method involved in the computation of an optimum solution to a linear programming problem.
b) Explain basic difference between CPM and PERT.

Q-4

Attempt all questions
a) Explain North-West corner method. Find the initial basic feasible solution of the following transportation problem by using North-West corner method.

	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	$\begin{gathered} \text { Supply } \\ 5 \end{gathered}$
S_{1}	9	12	9	8	4	3	
S_{2}	7	3	6	8	9	4	8
S_{3}	4	5	6	8	10	14	6
S_{4}	7	3	5	7	10	9	7
S_{5}	2	3	8	10	2	4	3
Demand	3	4	5	7	6	4	

b) A newly developed dairy has started producing cheese, butter, and milk candy. There are three departments: one is the manufacturing department and the other two are pasteurization and packing departments respectively. The following table shows the labor hours spent by one unit (kg) in each department.

Time/kg.				
Department	Cheese	Butter	Milk Candy	
I Manufacturing	10	1	2	
II Pasteurization	7	2	3	
III Packing	$2 / 5$	$4 / 5$	$2 / 5$	

The minimum working capacity of each plant is 100,75 , and 80 hours respectively. The profit on sale of one (kg) of cheese, butter, and milk candy is Rs. 12, Rs. 10 and Rs. 8 respectively. You have to plan the schedule that maximizes the total profit.
c) Draw a network diagram for the following data:

Activity	A	B	C	D	E	F	G	H	I	J	K
Immediate											
Predecessors	-	-	A	B	A	B	C,D	G,F	E	H,I	J

Attempt all questions

a) What is linear programming problem? How can formulate a given problem into linear programming problem?
b) Solve the following LP Problem by Graphical Method

Minimize $z=3 x_{1}+2 x_{2}$
Subject to

$$
\begin{gathered}
5 x_{1}+x_{2} \geq 10 \\
x_{1}+x_{2} \geq 6 \\
x_{1}+4 x_{2} \geq 12
\end{gathered}
$$

and $\quad x_{1}, x_{2} \geq 0$

$$
x_{1}, x_{2} \geq 0
$$

$x_{1}, x_{2} \geq 0$

c) A company management and the labour union are negotiating a new three year settlement. Each of these has 4 strategies:
I : Hard and aggressive bargaining
II : Reasoning and logical approach
III : Legalistic strategy
IV : Conciliatory approach
The costs to the company are given for every pair of strategy choice.

Union	Company Strategies			
Strategies	I	II	III	IV
I	20	15	12	35
II	25	14	8	10
III	40	2	10	5
IV	-5	4	11	0

What strategy will the two sides adopt? Also determine the value of the game.
a) Determine an initial basic feasible solution to the following transportation problem by using matrix minima method.

To	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	Availability
From						
O_{2}	50	40	50	20	10	12
O_{3}	60	50	40	70	30	14
Demand	4	4	6	8	8	

b) Solve the following LP Problem by Simplex method

Maximize $z=3 x_{1}+2 x_{2}$
Subject to

$$
\begin{gather*}
-2 x_{1}+3 x_{2} \leq \quad 9 \\
x_{1}-5 x_{2} \geq-20 \tag{03}
\end{gather*}
$$

and $\quad x_{1}, x_{2} \geq 0$
c) Solve the following LP Problem by Graphical Method

Maximize $z=3 x_{1}-2 x_{2}$
Subject to

$$
\begin{gather*}
\\
\\
\text { and } \quad \begin{array}{c}
x_{1}+x_{2} \leq 1 \\
2 x_{1}+2 x_{2} \geq 4
\end{array} \tag{02}\\
x_{1}, x_{2} \geq 0
\end{gather*}
$$

d) Write standard form of the following LP problem

Minimize $z=x_{1}-2 x_{2}+x_{3}$
Subject to

$$
\begin{gather*}
2 x_{1}+3 x_{2}+4 x_{3} \geq-4 \\
3 x_{1}+5 x_{2}+2 x_{3} \geq 7 \tag{14}
\end{gather*}
$$

and $x_{1}, x_{2} \geq 0$ and x_{3} is unrestricted in sign.
Attempt all questions
a) Use the penalty (Big-M) Method to solve the following LP Problem

Maximize $z=3 x_{1}+2 x_{2}$
Subject to

$$
\begin{aligned}
2 x_{1}+x_{2} & \leq 2 \\
3 x_{1}+4 x_{2} & \geq 12
\end{aligned}
$$

and $\quad x_{1}, x_{2} \geq 0$
b) Find all basic solution for the system of equation

$$
\begin{equation*}
2 x_{1}+3 x_{2}+4 x_{3}=5,3 x_{1}+4 x_{2}+5 x_{3}=6 \tag{04}
\end{equation*}
$$

c) Using the following predecessor relationship, draw a network diagram

Activity	A	B	C	D	E	F	G	H	I	J	K	L
Predecessor	-	-	-	A	A	B	C	C	D, E, F, G	I	H	H

d) Define:Optimum basic feasible solution, Unbounded solution.

Attempt all questions

a) Describe the transportation problem with its general mathematical formulation.
b) A paper mill produces two grades of paper namely X and Y. Because of raw material restrictions, it cannot produce more than 400 tons of grade X and 300 tons of grade Y in a week. There are 160 production hours in a week. It requires 0.2 and 0.4 hours to produce a ton of products X and Y respectively with corresponding profits of Rs. 200 and Rs. 500 per ton. Formulate the above as a LPP to maximize profit.
c) Solve the following game to find the saddle point.

Player B

		b_{1}		b_{2}	b_{3}	b_{4}
${ }^{*}$		b_{5}				
	a_{1}	4	0	1	7	-1
	a_{1}	0	-3	-5	-6	5
	a_{2}	3	2	2	4	3
	a_{3}	-6	1	-2	0	-5

d) Write matrix form of linear programming problem.

