Q-

C.U.SHAH UNIVERSITY Summer Examination-2018

Subject Name: Operations Research

	Subject	Code	4SC06ORE1	Bra	nch: B.Sc. (Mathemat	ics)	
	Semeste	er: 6	Date:07/05/2018	B Tin	ne:02:30 To 05:30	Marks: 7	70
	Instructi (1) (2) (3) (4)	ions: Use of Instruc Draw Assun	F Programmable calculator & ctions written on main answ neat diagrams and figures (in the suitable data if needed.	& any other ele er book are str f necessary) a	ectronic instrument is pr rictly to be obeyed. t right places.	ohibited.	
1	a)	Atter One (1) (2) (3) (4)	mpt the following question of the properties of Linear F It will not have constraints It should be easy to solve It must be able to adopt to The relationship between	solve any typ	Model is e of problem bles and constraints mu	st he linear	(14) (01)
	b)	(4) The 1 (1) (3)	key column indicates Outgoing variable Independent variable	(2) (4)	Incoming variable Dependent variable	st be fillear	(01)
	c)	The s (1) (3)	solution of the Linear progra First quadrant Third quadrant	amming proble (2) (4)	em in graphical solution Second quadrant Fourth quadrant	lies in	(01)
	d)	Whe know (1) (3)	n all the elements of replace n as Tie Break	ement ratio col (2) (4)	umn are equal, the situa Degeneracy None of the above	tion is	(01)
	e)	(b) The ((1) (3)	cost coefficient of slack vari Zero > than one	(1) able is (2) (4)	One < than one		(01)
	f)	In a t avail (1) (2) (3) (4)	ransportation problem when able resource is known as Balanced transportation pro Regular transportation pro Resource allocation transportation pro	re the demand roblem oblem portation prob blem	or requirement is equal lem	to the	(01)
	g)	In No (1) (2) (3) (4)	orthwest corner method the Starting from the left hand Starting from the right ha Starting from the lowest of Starting from the lowest r	allocations are d side top corr nd side top co cost cell requirement ar	e made her rner hd satisfying first		(01)

	h)	MODI stands for	(01)
		(1) Modern distribution (2) Mendel's distribution method	
		(3) Modified distribution method (4) Model index method	
	i)	If the losses of player A are the gins of the player B, then the game is known as:	(01)
		(1) Fair game (2) Unfair game	
		(3) Nonzero sum game (4) Zero sum game	
	j)	A game involving 'n' persons is known as:	(01)
		(1) Multimember game (2) Multiplayer game	
		(3) n -person game (4) Not a game	
	k)	Critical path method is an activity oriented and Program evaluation and revie	ew (01)
		technique is an event oriented. Determine whether the statement is True or False.	,
	l)	Saddle point means the value of the game. Determine whether the statement	is (01)
		True or False.	
	m)	Every LP problem can be solved graphically. Determine whether the statement is	; (01)
		True or False.	
	n)	Least cost method when applied in comparison with Vogel's approximati	on (01)
		method gives a better optimal solution. Determine whether the statement is True	or
		False.	
		Attempt any four questions from Q-2 to Q-8	
0_2		Attempt all questions	(14)
Q-7	a)	Obtain the initial basic feasible solution by Vogel's approximation method and	(14)
	<i>a)</i>	optimal solution by MODI method	(07)
		Destinations	
		$1 2 3 4 a_i$	
		$\frac{3}{2}$ 1 21 16 25 13 11	
		17 18 14 23 13	
		3 32 27 18 41 19	
		b_i 6 10 12 15	
	h)	Use the penalty (Big-M) Method to solve the following LP Problem	(07)
	,	Maximize $z = -2r_1 - r_2$	(07)
		Subject to	
		$3x_1 + x_2 = 3$	
		$4x_1 + 3x_2 > 6$	
		$x_1 + 2x_2 \le 0$ $x_1 + 2x_2 < 4$	
		and $x_1, x_2 > 0$	
0-3		Attempt all questions $a_1, a_2 = 0$	(14)
· ·		I I I I I I I I I I I I I I I I I I I	()

- a) Explain various steps of the simplex method involved in the computation of an optimum solution to a linear programming problem.
 b) Explain basic difference between CPM and PERT. (07) (07)

Q-4 Attempt all questions

a) Explain North-West corner method. Find the initial basic feasible solution of the following transportation problem by using North-West corner method.

	D_1	D_2	D_3	D_4	D_5	D_6	Supply
S_1	9	12	9	8	4	3	5
S_2	7	3	6	8	9	4	8
S_3	4	5	6	8	10	14	6
S_4	7	3	5	7	10	9	7
S_5	2	3	8	10	2	4	3
Demand	3	4	5	7	6	4	-

b) A newly developed dairy has started producing cheese, butter, and milk candy. (04) There are three departments: one is the manufacturing department and the other two are pasteurization and packing departments respectively. The following table shows the labor hours spent by one unit (kg) in each department.

Time/kg.											
Department	Cheese	Butter	Milk Candy								
I Manufacturing	10	1	2								
II Pasteurization	7	2	3								
III Packing	2/5	4/5	2/5								

The minimum working capacity of each plant is 100, 75, and 80 hours respectively. The profit on sale of one (kg) of cheese, butter, and milk candy is Rs. 12, Rs. 10 and Rs. 8 respectively. You have to plan the schedule that maximizes the total profit.

c) Draw a network diagram for the following data:

	0										
Activity	Α	В	С	D	E	F	G	Н	Ι	J	K
Immediate Predecessors	-	-	A	В	А	В	C,D	G,F	E	H,I	J
Attempt all questions											

Q-5

- a) What is linear programming problem? How can formulate a given problem into linear programming problem?
- **b**) Solve the following LP Problem by Graphical Method

Minimize $z = 3x_1 + 2x_2$ Subject to

$$5x_1 + x_2 \ge 10 x_1 + x_2 \ge 6 x_1 + 4x_2 \ge 12$$

and $x_1, x_2 \ge 0$

(**14**) (07)

(03)

(05)

(14)

(05)

A company management and the labour union are negotiating a new three year (04)**c**) settlement. Each of these has 4 strategies:

I : Hard and aggressive bargaining

II: Reasoning and logical approach

III : Legalistic strategy

IV : Conciliatory approach

The costs to the company are given for every pair of strategy choice.

Union		Company	Strategies	
Strategies	Ι	II	III	IV
Ι	20	15	12	35
II	25	14	8	10
III	40	2	10	5
IV	-5	4	11	0

What strategy will the two sides adopt? Also determine the value of the game.

Attempt all questions Q-6

Q-7

Determine an initial basic feasible solution to the following transportation problem (05)a) by using matrix minima method. $T_0 D_1 D_2$ D_a D. D- Availability

	10	$\boldsymbol{\nu}_1$	$\boldsymbol{\nu}_2$	$\boldsymbol{\nu}_3$	$\boldsymbol{\nu}_4$	$\boldsymbol{\nu}_5$	Avanability
	From			-		-	
	<i>0</i> ₁	40	20	30	20	60	8
	0 ₂	50	40	50	20	10	12
	03	60	50	40	70	30	14
	Demand	4	4	6	8	8	
b)	Solve the follo	wing LP	Problem by	Simplex	method		
		Maximiz	$e z = 3x_1$	$+2x_{2}^{-}$			
		Subject to	0				
				$-2x_1$	$+3x_2 \leq$	9	
				$x_1 - $	$5x_2 \ge -2$	20	
		and	$x_1, x_2 \ge 0$	0			
c)	Solve the follo	wing LP	Problem by	y Graphica	l Method		
		Ν	laximize z	$=3x_1-2$	$2x_2$		
		S	ubject to				
					$x_1 + x_2$	≤ 1	
				_	$2x_1 + 2x_2$	$_2 \geq 4$	
-		aı	$x_1,$	$x_2 \ge 0$			
d)	Write standard	form of t	he follown	ng LP prot	olem		
	$M_{111111120} z =$	$x_1 - 2x_2$	$+ x_3$				
	Subject to		0				
			$2x_1 - 2x_1 - $	$+3x_2 + 4$	$x_3 \ge -4$		
	1		$3x_1$	$+5x_2+2$	$2x_3 \ge 7$		
	and $x_1, x_2 \ge 0$	and x_3 is	unrestricte	d in sign.			
`	Attempt all qu			1 .1	C 11 '	100 11	
a)	Use the penalty	y (Big-M)	Method to	solve the	following	LP Problei	m
		Max1m1z	$e z = 3x_1$	$+ 2x_2$			

Subject to

 $2x_1 + x_2 \le 2$ $3x_1 + 4x_2 \ge 12$

(14)

x_1, x_2	\geq	0
------------	--------	---

and

Q-8

b)	Find all basic	soluti	on fo	r the	syste	m of	equat	ion						(04)
	$2x_1 + 3x_2 + 4x_3 = 5, 3x_1 + 4x_2 + 5x_3 = 6$													
c)	c) Using the following predecessor relationship, draw a network diagram											(03)		
	ActivityABCDEFGHIJKLPredecessor $ -$ AABCCD, E, F, GIHH													
	Predecessor $ A$ A B C C D, E, F, G I H H													
d)	Define:Optime	um ba	asic fo	easibl	le sol	ution	, Unb	ound	ed so	lution.				(02)
	Attempt all q	uesti	ons											(14)
a)	Describe the tr	ransp	ortati	on pr	obler	n witl	h its g	genera	al ma	thematical f	ormu	lation	l .	(05)
b)	A paper mill	prod	uces	two	grade	es of	pape	r nan	nely	X and Y. I	Becau	ise of	f raw	(04)
	material restrictions, it cannot produce more than 400 tons of grade X and 300 tons													
	of grade Y in a	a wee	k. Th	ere a	re 16	0 pro	ducti	on ho	urs ir	n a week. It i	requii	res 0.2	2 and	
	0.4 hours to p	orodu	ce a t	ton o	f pro	ducts	X ar	nd Y	respe	ectively with	n corr	espoi	nding	

profit.c) Solve the following game to find the saddle point.

		Player B									
		b_1	b_2	b_3	b_4	b_5					
	a_1	4	0	1	7	-1					
Diaxon A	a_2	0	-3	-5	-6	5					
r layer A	a_3	3	2	2	4	3					
	a_4	-6	1	-2	0	-5					

profits of Rs.200 and Rs.500 per ton. Formulate the above as a LPP to maximize

d) Write matrix form of linear programming problem.

State UNIVERSIT

(03)

(02)